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Abstract 

The article presents issues concerning the analysis of one-dimensional traction signals describing energy 
conversion processes in driving systems of electric traction vehicles. The method of FFT analysis has been compared 
to the wavelet method. The most crucial tasks have been discussed of wavelet analyses of signals connected with the 
problems of drive modelling. Fundamental tasks of coefficient analyses such as approximation, compression and 
denoising have been taken into account, as well as more complex tasks such as filtering band component and feature 
extraction. An example of analysis of current signal from tram driving system obtained in the conditions of tractive 
adhesion failure has been presented. A hypothesis has been demonstrated that coefficients obtained in subsequent 
stages of wavelet decomposition can constitute the basis for indicating electric current feature vector for the 
phenomenon of adhesion failure. Application has been proposed of simple characteristics of transform coefficients 
such as energy, number of zero transitions and power. A feature vector of coefficients has been chosen. A method of 
feature classification has been proposed in order to implement it in adhesion failure recognition. The results of 
verification of wavelet analysis application in adhesion failure recognition have been presented. A stance has been 
taken as to the results of the diagnosis taking into consideration currently used anti-slip systems of traction vehicles. 
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1. Introduction  
 

Applying the notions of signal theory [1] to traction rules, traction signal is understood as 
process of changes of a selected electromechanical physical value or of a drive state variable in 
time carrying the information of the course of motion. Mathematical models describing drive 
operation are usually presented in the form of differential equation sets. In measurement system 
models, random phenomena of discretization disturbances (sampling and quantization) are also 
taken into account. As a result, mathematical models of single realizations of traction signals are 
one-dimensional discrete real-valued functions containing a determined component and noise.  

Typical issues of traction signal processing concentrate on extracting information carried by 
them in order to interpret the process. Effects of obtaining information depend on the manner of 
signal processing. One of the basic ways of digital processing of stationary signals is FFT 
transform [2], serving for signal representation in the field of sine and cosine function frequency. 
In non-stationary signal research, a benchmark method for signal processing is short-term Fourier 
transform (STFT) [3], making it possible to use time-frequency signal representation. For signal 
analyses which are not about obtaining information concerning signal spectrum in time, but only 
about tracing the presence of clearly determined short-term run within the signal, wavelet 
transforms can be used [4], representing a signal within the field of scale and shift.  

The difference between signal analysis by means of Fourier method and the wavelet one, 
concerns the analysing function. Analysing functions of discrete wavelet transform of a compact 
carrier are discrete functions determined within a closed range (wavelet and scaling function) [5], 
[6], whereas Fourier‘s – are continuous functions determined within infinite range (sine and 
cosine) [7, 8]. Wavelet transform searches for wavelet shapes within the signal, whereas Fourier‘s 
– for sine functions. Analysing functions of wavelet transform are scaled and shifted, whereas 
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Fourier‘s – distributed at a uniform rate. Therefore, half of the coefficients of wavelet transform 
are located within the band of the lowest scale, whereas coefficients of FFT transform cover the 
whole frequency range at a uniform rate (up to Nyquist frequency). 

Figure 1 represents sample diagrams of one-dimensional signal transforms: a) wavelet 
transform, b) FFT transform. In the example presented, the original signal has 16 elements – 
wavelet transform three levels of scale (16 elements, 3 of which are non-zero), whereas FFT – nine 
terms of Fourier sequence (16 elements – all zero). If the purpose of the signal analysis is not its 
distribution into harmonic ones, but only searching for signal fragments of particular shapes, then 
the use of wavelet method is more appropriate than FFT method (in the example discussed, it is 
easier to interpret three coefficients than sixteen).  
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Fig. 1. Sample diagrams of transforms: a ) wavelet analysis, b) FFT 
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Fig. 2. General outline of wavelet method applications to feature recognition of one-dimensional traction signals 

 
The article shall present results of wavelet analyses of current applied to recognition of 

adhesion failure states of trams driven by direct current engines. The signals whose analysis results 
are presented, refer to adhesion failure during braking period and were measured in Warsaw 
Trams. The result of analyses concerning adhesion failure during start-up period (with the use of 
signals measured by the Electrical Engineering Institute) was presented in papers [9, 10]. 

Figure 2 presents the diagram applied to recognition of the phenomenon with the use of 
wavelet method of signal analysis. The most significant part of it is extraction of signal features. 
What is meant by extraction of features is signal analysis directed at reduction of information 
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included in the signal to the part of information which can be associated with object functioning 
(in this case, with adhesion failure). Fundamental difficulty in selecting feature vector of adhesion 
failure phenomenon is that selected features must fulfil requirements concerning such properties as 
predictability, power, non-imitability or usefulness. In the analysis presented, feature vector 
discussed in paper [10] has been used.  
 
2. Examples of operating current signals from tram driving system for various adhesion 

conditions  
Figure 3 presents sample experimental current runs of the second group of tram engines with 

direct current drive for running: a) without adhesion failure, b) with adhesion during braking 
period (T2). Current scale amounts to 100 A/lot. Sampling frequency equals 25 kHz. 

Figure 4 shows signal fragment for running with adhesion failure during braking period. In the 
signal fragment presented, runs of impulse and slow-varying components are visible. Apart from 
the enumerated components, the signal also comprises a constant component and measurement 
noise.  
 

 
Fig. 3. Sample experimental runs of current of the second group of engines1 of a tram with a direct current drive for 

running: a) without adhesion failure, b) with adhesion failure during braking period (T2) 
 

 
Fig. 4. Selected fragments of current signal from fig. 3b a) current run with adhesion failure during braking period 

b) run during several impulsing periods 

                                                 
1 Measurement: W. Kozik (Tramwaje Warszawskie - Warsaw Trams) 
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3. FFT and wavelet analyses in application to component separation 
 
Figure 5 presents power spectrum distribution of FFT of current signal presented earlier in 

Fig. 3b: a) within frequency range up to 2.5 kHz, b) – up to 25 Hz. Fig. 5a shows visible power 
striae of the signal from impulsing frequency of 300 Hz. In Fig. 5b, we can see a falling character 
of power distribution of frequency components of the signal without clear local extremes. There 
are several reasons for broadening of power spectrum of the signal in this particular frequency 
range. First of all, a slow-varying component can be aperiodic (in non-linear dynamics systems, 
deterministic component of current run can have frequency changeable in time). Secondly, in the 
process of driving, several short-term phenomena occur, causing slow changes of current which 
are similar to each other, and whose spectrum characteristics overlap (features of phenomena 
imitability). Thirdly, numerical effects of FFT method are present [1], [8] – spectrum leak 
(because of non-synchronised sampling), aliasing. The drawback of FFT analysis of the signal is 
lack of time location of frequency features tested. 
 

 
Fig. 5. FFT power spectrum distribution of experimental signal: a) within frequency range 2.5 kHz, b) – 25 Hz 

 
Wavelet analysis makes it possible to conduct time location testing of changes of values within 

the signal. The first fundamental signal component is approximation, which in the case of signals 
coming from electromechanical driving systems, should illustrate the so called set component of 
processes. Fig. 6 presents a sample result of approximation for the current signal presented earlier 
in Fig. 3 b: a) fragment of the original signal subjected to transform, b) scaling coefficients 
distribution, c) approximation as a result of reverse transform of vector of coefficients.  

Figure 7 presents a slow-varying signal component: a) wavelet coefficients distribution, 
b) component as a result of reverse transform of vector of coefficients obtained. The component 
obtained comprises most information concerning periods of occurrence of slow changes of current 
signal (of dominating frequencies of about 1 Hz).  

Figure 8 presents a slow-varying component: a) wavelet coefficients distribution, 
b) component as a result of reverse transform of vector of coefficients obtained.  

Figure 9 presents an impulse component (about 300 Hz): a) wavelet coefficients distribution, 
b) component as a result of reverse transform of vector of coefficients obtained. 

Figure 10 presents a diagram of an impulse component fragment in time 50 ms, chosen 
identically to that of Fig. 4. It is visible that the diagram presented can serve for estimation of 
impulsing parameters: impulsing frequency and impulse filling coefficient. 
 
4. Wavelet method of signal feature extraction 

 
The simplest functions of coefficient assessment can be used as measurements of pulse content 

of slow-varying components, such as energy, power or number of zero-transitions. In research 
conducted by the present author concerning adhesion failure recognition during start-up period, 
especially useful turned out to be the dependence between the difference of scaling function 
energy and the basic wavelet: ED = e1 – e2 [10]. This function has all the required properties: 
predictability, power, non-imitability and usefulness. In particular, it makes it possible to shorten 
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time basis of acquisition window to the minimum, which causes significant reduction in 
calculation outlay. Minimal length of acquisition window can be expressed by the following 
equation:  

 

 
samp

DJ
D

f
t 12
min , (1) 

 
where: 
 
tmin

D - minimal length of acquisition window, 
J - maximal depth of analysis of pattern signal, 
fsamp - sampling frequency (25 kHz). 
 

 
Fig. 6. Approximation L = 1 - 5 for current signal presented earlier in fig. 3 b: a) fragment of the original signal 

subjected to transform, b) scaling function coefficients distribution, c) approximation as a result of reverse 
transform of vector of coefficients 
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Fig. 7. Slow-varying component L = 6 – 9: a) wavelet function coefficients distribution, b) component as a result of 
reverse transform of vector of coefficients obtained 

 

 

Fig. 8. Commutative component L = 10 – 12: a) wavelet coefficients distribution, b) component as a result of reverse 
transform of vector of coefficients obtained 
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Fig. 9. Impulse component L = 13 – 15: a) wavelet coefficients distribution, b) component as a result of reverse 

transform of vector of coefficients obtained 
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Fig. 10. Impulse component L = 13 – 15 as a detail of Fig. 8, to be compared to the run in Fig. 4b 
 

Figure 11 presents sample assessment results. Whereas Fig. 11a, a diagram of a fragment of 
analysed pattern current signal of dyadic length J = 19 (219 elements, presented in a full form in 
Fig. 3b) with an indicated braking period in which assessment should be conducted of pulse 
content of a slow-varying component.  

Figures 11a – 11d present results of assessment function application on selected levels of slow-
varying component D = 6 - 9. The time basis of acquisition window changes from the value of tmin

6 
= 0.32 s (on the level of 6) to the value of tmin

9 = 0.04 s (on the level of 9). The number of signal 
elements taken for analyses from which representation vectors (coefficients) are created fall down 
to the value of 213 (level 6) to the value of 210 (level 9). It is easy to notice that power and non-
imitability of the feature discussed fall down together with the increase of analysis level– the 
biggest differences of assessment function occur on level D = 6, and the lowest– on level D = 9 
(on this level, the possibility of erroneous classification is also the highest). For each level of 
transform there is a possibility of creating a feature pattern. For instance, on level D = 8 it can be 
the value of assessment function equalling 0.2. Sample classification results conducted on level D 
= 8 with a feature pattern 0.2 are placed in Fig. 12 (positive classification result was omitted at the 
moment t = 5 s, because this moment is the moment of braking initiation). 

 
5. Summary 
 

Wavelet transforms are dedicated to searching within signals for fragments of determined finite 
shapes. Therefore, this method can be used as a signal converter in solving recognition problems 
in which interpretation of Fourier’s distribution results is not straightforward (or is too 
ambiguous). The example of a signal whose features are difficult to assess in the domain of 
Fourier’s transform coefficients is current run of a group of traction engines for the period 
of adhesion failure of a track vehicle. Wavelet transform deals well with the analysis of this type 
of run in which the increase of amplitude of a slow-varying component is a one-time phenomenon 
of aperiodic character.  

The results presented show that there is a possibility of detection of adhesion failure of 
a traction vehicle during braking period on the basis of current pulse classification in the domain 
of wavelet transform coefficients. Predicted time delay of recognition method with the use of this 
analysis equals 40 ms. Further research programme should encompass both the implementation 
of the method presented for DSP processor and drawing up an intervention algorithm in 
cooperation with existing anti-slip systems of a vehicle.  
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Fig. 11. Result of application of difference of scaling function energy and basic wavelet: ED = e1 – e2 as measurement of 

slow-varying component pulse feature: a) original signal, b) filtering level D = 6 with windowing tmin
6 = 0.32 s, 

c) filtering level D = 7 with windowing tmin
7 = 0.16 s, d) filtering level D = 8 with windowing tmin

8 = 0.08 s, 
e) filtering level D = 9 with windowing tmin

9 = 0.04 s 

 
Fig. 12.  Result of braking adhesion failure recognition on the basis of wavelet current analysis  
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